119 research outputs found

    Traj-LO: In Defense of LiDAR-Only Odometry Using an Effective Continuous-Time Trajectory

    Full text link
    LiDAR Odometry is an essential component in many robotic applications. Unlike the mainstreamed approaches that focus on improving the accuracy by the additional inertial sensors, this letter explores the capability of LiDAR-only odometry through a continuous-time perspective. Firstly, the measurements of LiDAR are regarded as streaming points continuously captured at high frequency. Secondly, the LiDAR movement is parameterized by a simple yet effective continuous-time trajectory. Therefore, our proposed Traj-LO approach tries to recover the spatial-temporal consistent movement of LiDAR by tightly coupling the geometric information from LiDAR points and kinematic constraints from trajectory smoothness. This framework is generalized for different kinds of LiDAR as well as multi-LiDAR systems. Extensive experiments on the public datasets demonstrate the robustness and effectiveness of our proposed LiDAR-only approach, even in scenarios where the kinematic state exceeds the IMU's measuring range. Our implementation is open-sourced on GitHub.Comment: Video https://youtu.be/hbtKzElYKkQ?si=3KEVy0hlHBsKV8j0 and Project site https://github.com/kevin2431/Traj-L

    FastMESH: Fast Surface Reconstruction by Hexagonal Mesh-based Neural Rendering

    Full text link
    Despite the promising results of multi-view reconstruction, the recent neural rendering-based methods, such as implicit surface rendering (IDR) and volume rendering (NeuS), not only incur a heavy computational burden on training but also have the difficulties in disentangling the geometric and appearance. Although having achieved faster training speed than implicit representation and hash coding, the explicit voxel-based method obtains the inferior results on recovering surface. To address these challenges, we propose an effective mesh-based neural rendering approach, named FastMESH, which only samples at the intersection of ray and mesh. A coarse-to-fine scheme is introduced to efficiently extract the initial mesh by space carving. More importantly, we suggest a hexagonal mesh model to preserve surface regularity by constraining the second-order derivatives of vertices, where only low level of positional encoding is engaged for neural rendering. The experiments demonstrate that our approach achieves the state-of-the-art results on both reconstruction and novel view synthesis. Besides, we obtain 10-fold acceleration on training comparing to the implicit representation-based methods

    Scalable Image Retrieval by Sparse Product Quantization

    Get PDF
    Fast Approximate Nearest Neighbor (ANN) search technique for high-dimensional feature indexing and retrieval is the crux of large-scale image retrieval. A recent promising technique is Product Quantization, which attempts to index high-dimensional image features by decomposing the feature space into a Cartesian product of low dimensional subspaces and quantizing each of them separately. Despite the promising results reported, their quantization approach follows the typical hard assignment of traditional quantization methods, which may result in large quantization errors and thus inferior search performance. Unlike the existing approaches, in this paper, we propose a novel approach called Sparse Product Quantization (SPQ) to encoding the high-dimensional feature vectors into sparse representation. We optimize the sparse representations of the feature vectors by minimizing their quantization errors, making the resulting representation is essentially close to the original data in practice. Experiments show that the proposed SPQ technique is not only able to compress data, but also an effective encoding technique. We obtain state-of-the-art results for ANN search on four public image datasets and the promising results of content-based image retrieval further validate the efficacy of our proposed method.Comment: 12 page

    End-to-end Weakly-supervised Multiple 3D Hand Mesh Reconstruction from Single Image

    Full text link
    In this paper, we consider the challenging task of simultaneously locating and recovering multiple hands from single 2D image. Previous studies either focus on single hand reconstruction or solve this problem in a multi-stage way. Moreover, the conventional two-stage pipeline firstly detects hand areas, and then estimates 3D hand pose from each cropped patch. To reduce the computational redundancy in preprocessing and feature extraction, we propose a concise but efficient single-stage pipeline. Specifically, we design a multi-head auto-encoder structure for multi-hand reconstruction, where each head network shares the same feature map and outputs the hand center, pose and texture, respectively. Besides, we adopt a weakly-supervised scheme to alleviate the burden of expensive 3D real-world data annotations. To this end, we propose a series of losses optimized by a stage-wise training scheme, where a multi-hand dataset with 2D annotations is generated based on the publicly available single hand datasets. In order to further improve the accuracy of the weakly supervised model, we adopt several feature consistency constraints in both single and multiple hand settings. Specifically, the keypoints of each hand estimated from local features should be consistent with the re-projected points predicted from global features. Extensive experiments on public benchmarks including FreiHAND, HO3D, InterHand2.6M and RHD demonstrate that our method outperforms the state-of-the-art model-based methods in both weakly-supervised and fully-supervised manners

    On the spectrum of operators concerned with the reduced singular Cauchy integral

    Get PDF
    We investigate spectrums of the reduced singular Cauchy operator and its real and imaginary components

    FastHuman: Reconstructing High-Quality Clothed Human in Minutes

    Full text link
    We propose an approach for optimizing high-quality clothed human body shapes in minutes, using multi-view posed images. While traditional neural rendering methods struggle to disentangle geometry and appearance using only rendering loss, and are computationally intensive, our method uses a mesh-based patch warping technique to ensure multi-view photometric consistency, and sphere harmonics (SH) illumination to refine geometric details efficiently. We employ oriented point clouds' shape representation and SH shading, which significantly reduces optimization and rendering times compared to implicit methods. Our approach has demonstrated promising results on both synthetic and real-world datasets, making it an effective solution for rapidly generating high-quality human body shapes. Project page \href{https://l1346792580123.github.io/nccsfs/}{https://l1346792580123.github.io/nccsfs/}Comment: International Conference on 3D Vision, 3DV 202
    • …
    corecore